Gerstenhaber algebra

In mathematics and theoretical physics, a Gerstenhaber algebra (sometimes called an antibracket algebra or braid algebra) is an algebraic structure discovered by Murray Gerstenhaber (1963) that combines the structures of a supercommutative ring and a graded Lie superalgebra. It is used in the Batalin–Vilkovisky formalism.

Definition

A Gerstenhaber algebra is a differential graded commutative algebra with a Lie bracket of degree -1 satisfying the Poisson identity. Everything is understood to satisfy the usual superalgebra sign conventions. More precisely, the algebra has two products, one written as ordinary multiplication and one written as [,], and a Z-grading called degree (in theoretical physics sometimes called ghost number). The degree of an element a is denoted by |a|. These satisfy the identities

Gerstenhaber algebras differ from Poisson superalgebras in that the Lie bracket has degree -1 rather than degree 0. The Jacobi identity may also be expressed in a symmetrical form

(-1)^{(|a|-1)(|c|-1)}[a,[b,c]]%2B(-1)^{(|b|-1)(|a|-1)}[b,[c,a]]%2B(-1)^{(|c|-1)(|b|-1)}[c,[a,b]] = 0.\,

Examples

References